

Molid - Mock Solid Server

A mock server, that can be used for testing Solid apps locally.

Use cases:

	Provide data on localhost during development 🚧

	Ensure your Solid app is really compatible to different kind of Pod structures 🔗

	Provision Test-Pods for automated integration testing 🚦

	…

[image: Documentation Status]
 [https://molid.readthedocs.io/en/latest/?badge=latest]
Quick start 🚀

Start using npx, no installation needed

$ npx molid

Molid - mock Solid server listening on port 3333!

Molid provides some Solid data, that you can now access via HTTP, e.g.

$ curl http://localhost:3333/profile/card

All the mock data is stored within the .molid folder in your current directory. Adjust it to your needs and restart.

Read The Docs 📖

Read the whole documentation on https://molid.readthedocs.io

Contents

	Installation
	Install as a global CLI command

	Install for usage within your Solid app project

	The data directory
	Default data dir

	Initialization

	Data Import

	Starting programmatically
	Start parameters

	Construct an absolute URI

	Stopping Molid

	Usage in integration tests
	General approach

	Jest support

	Configuration
	Adjust port

	Limitations

	Changelog
	Version 0.3.0

	Version 0.2.0

	Version 0.1.2

Installation

Install as a global CLI command

$ npm install --global molid

then start Molid anywhere via

$ molid

Be aware that the data directory .molid will be created, where you execute the command.

Install for usage within your Solid app project

$ npm install --save-dev molid

Add a script to your package.json:

{
 "scripts": {
 "molid": "molid"
 }
}

Then start Molid via

$ npm run molid

The data directory

Molid uses the file system to initialize the data it provides at runtime. Unlike real Solid server implementations like
Node Solid Server [https://github.com/solid/node-solid-server] it will never change any data in that directory.

Default data dir

When you start Molid via CLI or an npm script, it will use the default data dir called .molid, relative to the place
where you execute the command. The default data dir is also used when calling start() without
a dataDir.

Initialization

When Molid starts it will create the data dir, if it does not yet exist. In that case, it will initialize the directory
with a minimal Solid profile. If the data dir does already exist, Molid will not touch anything.

After initialization, Molid will continue to import the data from that directory into it’s internal store.

Data Import

After initialization, Molid imports all data from the data dir to an internal store. The relative path of the files
results in a matching url path, but the file endings starting with $ will be stripped.

Some examples:

	File

	URL path

	.molid/public/bookmarks

	/public/bookmarks

	.molid/notes.ttl

	/notes.ttl

	.molid/profile/card$.ttl

	/profile/card

LDP Containers

Folders that contain at least one imported file, will lead to the creation of an LDP container.
This includes parent folders. For example, if there is a file .molid/frist/second/file.ttl,
the following containers will be created:

	Folder

	Container URL path

	.molid/first/second/

	/first/second/

	.molid/first/

	/first/

	.molid/

	/

Note

All container URLs end with a /. Requests without trailing slash will be answered with 404 Not Found.

Edit data

You can edit, add or remove files inside the data directory as you wish. All files have to contain valid RDF in turtle
format. A folder has to contain at least one imported file (directly or in a sub-folder), otherwise it will be ignored.

Note

You have to restart Molid after you changed data.

Starting programmatically

You can start Molid programmtically from inside your application or test:

	1
2
3
4
5

	import { start } from 'molid';

async function your_code() {
 const molid = await start();
}

The code above will start Molid using a random available port and import data from the default data directory.

Start parameters

You can pass a configuration object to the start function:

	1
2
3
4
5
6
7
8

	import { start } from 'molid';

async function your_code() {
 const molid = await start({
 port: 3456,
 dataDir: path.join(__dirname, '.fake-data'),
 });
}

	Parameter

	Description

	port

	The port to start Molid on

	dataDir

	Absolute path to the data directory

Construct an absolute URI

When starting Molid, you probably want to fetch something from it, and therefore need the URI of a document.
When Molid starts on a random port, you will not know the URI. But even if you defined the port yourself,
the following function is still handy to construct absolute URIs referring to Molid resources:

	1
2
3
4
5
6
7
8

	import { start } from 'molid';

async function your_code() {
 const molid = await start();
 const webId = molid.uri('/person/card#me');
 const response = await fetch(webId);
 // ...
}

Stopping Molid

To stop a running Molid instance, call the stop method on the object returned from start

	1
2
3
4
5
6
7

	import { start } from 'molid';

async function your_code() {
 const molid = await start();
 // do your things ...
 molid.stop();
}

Note

You can start multiple Molid instances at once on different ports.

Usage in integration tests

General approach

By starting Molid programmatically it can easily be used inside integration tests. Just
start Molid in a setup method and stop it during tear down.

Here is an example using Jest, but the approach can be applied to any test framework:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	import { start } from 'molid';
import { loadProfile } from './your-code';

describe('using Molid for testing', () => {
 let molid;
 beforeAll(async () => {
 molid = await start({
 dataDir: path.join(__dirname, '.mock-profile-john'),
 });
 });

 afterAll(async () => {
 await molid.stop();
 });

 it('successfully fetches the profile document', async () => {
 const webId = molid.uri('/profile/card#me');
 const profile = await loadProfile(webId);
 expect(profile.name).toEqual('John');
 });
});

In lines 7-9 Molid is started before all tests, using a data directory next to the test. We placed some fake data in
that directory and the expectations in our test are based on the data.
In line 17 we construct a WebID using molid.uri() and pass it to a
fictional loadProfile method. Line 13 finally stops the running Molid instance after all tests.

Warning

Be careful to always await both, the startup and stopping of Molid!

Jest support

Molid has built-in support to simplify Jest [https://jestjs.io] tests.

givenMolid(name, fn)

You can use givenMolid(name, fn) to create a Jest describe block, that will handle startup and shutdown
of a Molid instance for you. The following test is an equivalent to the one described in the section
General approach, but using givenMolid:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	import { givenMolid } from 'molid/lib/molid-jest';
import { loadProfile } from './your-code';

describe('using the givenMolid function', () => {
 givenMolid('with a profile of a person called John', molid => {
 it('successfully fetches the profile document', async () => {
 const webId = molid.uri('/profile/card#me');
 const profile = await loadProfile(webId);
 expect(profile.name).toEqual('John');
 });
 });
});

Molid will start up before all of the tests of that group and shutdown afterwards. The running instance is passed
to fn, so that you can easily generate URIs via molid.uri() inside your tests.

Molid will use a data directory next to the test file, that equals the name plus the extension .molid.
So in the example above the data directory will be with a profile of a person called John.molid.

Note

Be aware that the directory name may be sanitized [https://www.npmjs.com/package/sanitize-filename]
when you are using some fancy characters in the name.

Configuration

Adjust port

The port Molid is running on can be adjusted by setting the PORT environment variable to the desired value.

PORT=3030 npm run molid

Limitations

Molid is still in early development. Some features are missing intentionally, since Molid is a mock server and no full
implemention of the Solid specification. Some other features might be useful to mock, but are missing yet.

Things Molid does not provide:

	Authentication / Authorization

	Link headers

	Metadata of container contents (sizes, modification dates, …)

	Updating data (POST, PUT, PATCH)

	Support for any file formats other than turtle

	for sure some more things not listed here

If one of the limitations are holding you back from using Molid, please file a feature request or contribute by
submitting a merge request ❤

Changelog

Version 0.3.0

New features

	non-empty folders get imported as LDP containers

	non-existing resources now return 404 instead of an empty document

Version 0.2.0

New features

	start and stop Molid programmatically

	use Molid for integration testing

	Jest support via givenMolid()

Version 0.1.2

New features

	Start via npx or via npm script

	Initialize with data from local .ttl files

	Serve data as text/turtle via http

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Molid - Mock Solid Server

 		
 Installation

 		
 Install as a global CLI command

 		
 Install for usage within your Solid app project

 		
 The data directory

 		
 Default data dir

 		
 Initialization

 		
 Data Import

 		
 LDP Containers

 		
 Edit data

 		
 Starting programmatically

 		
 Start parameters

 		
 Construct an absolute URI

 		
 Stopping Molid

 		
 Usage in integration tests

 		
 General approach

 		
 Jest support

 		
 givenMolid(name, fn)

 		
 Configuration

 		
 Adjust port

 		
 Limitations

 		
 Changelog

 		
 Version 0.3.0

 		
 New features

 		
 Version 0.2.0

 		
 New features

 		
 Version 0.1.2

 		
 New features

_static/up.png

_static/up-pressed.png

